

VORTEX FLOWMETER User Manual (V 4.1)

VORTEX FLOWMETRER

User Manual

1	01	VERVI	EW	1
	1.1	TECI	HNICAL SUPPORT	1
	1.2	MAI	N SPECIFICATION	. 1
	1.3	FEAT	TURES	1
2	HA	ARDW	ARE	2
	2.1	TERI	MINAL BOARD WIRING	. 2
		2.1.1	4~20MA OUTPUT+ HART+ EXTERNAL PRESSURE	2
		2.1.2	PULSE OUTPUT+ EXTERNAL PRESSURE AND TEMPERATURE SENSORS	2
	2.2	SEN	SOR INTERFACE	3
		2.2.1	VORTEX SENSOR	3
		2.2.2	PRESSURE SENSOR	3
		2.2.3	TEMPERATURE SENSOR	3
3	LC	CD DIS	PLAY	4
	3.1	THR	EE-LINE DISPLAY MODE	4
	3.2	TWC	D-LINE DISPLAY MODE	. 4
4	PR	RODUC	CTION PROCESS USING HART-CONFIG TOOL	5
5	PR	RODUC	CTION PROCESS VIA LOCAL ADJUSTMENT	6
6	DA	ATA EN	VTRY	7
	6.1	BAS	IC FUNCTION OF KEYS	. 7
	6.2	ENT	ER OR EXIT MENU MODE	7
		6.2.1	ENTER MENU MODE	. 7
		6.2.2	EXIT MENU MODE	7
	6.3	DAT	A ENTRY METHOD	7
		6.3.1	SELECT METHOD	. 7
		6.3.2	DATA INPUT METHOD	7
	6.4	LOC	AL CONFIGURATION FUNCTION	. 8
		6.4.1	BASIC FUNCTION (NO PASSWORD)	8
		6.4.2	ADVANCED FUNCTION (PASSWORD PROTECTION)	9
	6.5	TOT	ALIZER FLOW UNIT TABLE	13
7	PA	RAMI	ETER DESCRIPTION	13
	7.1	K- FA	ACTOR	13

AYVAZ

7.2	FIVE	-POINT LINEARITY CORRECTION
7.3	PULS	SE FACTOR DESCRIPTION 14
7.4	OUT	PUT ORIGINAL PULSES DESCRIPTION14
7.5	TEM	PERATURE AND PRESSURE COMPENSATION14
	7.5.1	PRECONDITION
	7.5.2	PRESSURE SENSOR TRIM14
	7.5.3	LOW PRESSURE CUTOFF VALUE
	7.5.4	PRESSURE BIAS SETTINGS
	7.5.5	TEMPERATURE SENSOR TRIM
7.6	MEA	SUREMENT MODE SETUP INSTRUCTIONS 16
	7.6.1	GAS QV
	7.6.2	GAS QM
	7.6.3	LIQUID QV
	7.6.4	LIQUID QM
	7.6.5	STEAM QV
	7.6.6	STEAM MASS
	7.6.7	LANGUAGE OPTION

AFM-10 / Vortex Flowmeter

User Manual

1 Overview

1.1 Technical Support

AFM-10 is designed for HART vortex/Vortex flowmeters with pressure and temperature compensation function.

Please read this manual carefully before use AFM-10 Please follow this manual to complete your operation. If you have any questions, please do not hesitate to contact us.

1.2 Main Specification

Power supply:	12-32VDC
Operating temperature:	-20°C ~ +70°C(with LCD)
	$-40^{\circ}C \sim +85^{\circ}C$ (without LCD)

1.3 Features

Output:	4~20mA output with HART			
Configuration:	Flow mode, Flow unit, Range (Qmax), Density, Display, etc.			
Alarm:	Low alarm will output 3.8mA, high alarm will output 22.0mA.			
K-Factor linearity:	AFM-10 provides 2 to 5 points k-Factor correction.			
Local adjust functions:	Setting flow range and unit, Density, Flow mode, damping, alarm, and data			
	recovery etc.			
LCD display:	The first line shows the instantaneous flow. The second line shows the totalized			
	flow. The third line can display the percentage, loop current, temperature,			
	pressure, density and so on.			
Perfect compensation: AFM-10 supports real-time temperature and pressure compensation for gas supports the international standard of steam density table, temperature and pressure compensation for over heat steam, pressure compensation temperature compensation for saturated steam.				
Restore factory settings	: If the damping value entered is '05678', it will automatically perform 'restore			
	factory settings'. (Manufacturers need to perforn 'Data Backup' operation.)			
Temperature trim:	High trim and low trim easily.			
Pressure trim:	High trim and low trim easily.			
AEM 10 has a mourse day	un data matastian function and a flow assumulation function			

AFM-10 has a power-down data protection function and a flow accumulation function.

2 Hardware

2.1 Terminal Board Wiring

The terminal board is used for connects the external power supply, output pulse, the external pressure sensor and temperature sensor.

The following are common wiring.

2.1.1 4~20mA output+ HART+ External Pressure

2.1.2 Pulse Output+ External Pressure and Temperature sensors

2.2 Sensor Interface

2.2.1 Vortex Sensor

The 2-Pin green terminal XT is used for connecting the vortex sensor.

2.2.2 Pressure Sensor

Users can use XF3 socket to connect pressure sensor, and the pressure sensor should be bridge type sensors. I+ and I- are power supply, A + and A- are the sensor signal outputs.

The bridge impedance of the pressure sensor is required to be between 3000 and 6000 ohms. The excitation current of the sensor is about 0.3mA, and the output of the sensor is required to not exceed 50mV@0.3mA.

Socket XF3 defined as follows:

2.2.3 Temperature Sensor

Socket XF5 supports Pt1000 and Pt100, two-wire connection.

Installation Notes: To ensure reliable grounding, the board must be securely attached to the housing for testing!

MAYVAZ

3 LCD Display

LCD with 128 * 64 dot matrix display, support for multi-variable display. The instrument supports two display modes :

3.1 Three-line display mode

Displays the current percentage in progress bar

First line display Instantaneous flow. The second line display totalized flow.

The third line display frequency, pressure, temperature, density, current or the percentage.

Notes:

- ☑ If enable automatic measure pressure, and the pressure signal abnormality (sensor fault), the corresponding pressure value will be replaced with the set pressure value and will flash.
- If enable automatic measure temperature, and the temperature signal abnormality (sensor fault), the corresponding temperature value will be replaced with the set temperature value and will flash.
- When the flow mode is Sat_Steam(P), that means saturated steam pressure compensation, the temperature value will display as "----", which means the acquisition of temperature sensor is not activated.
- ☑ When the flow mode is Sat_Steam(T), that means saturated steam temperature compensation, the pressure value will display as "----", which means the acquisition of pressure sensor is not activated.

You can press KEY-M to change the third line display variables. Use indicator to distinguish between different display variables shows in the second line.

Indicator	F:	Den:	P:	T:	Curr:	Per:	P= T=
variable	Frequency	Density	Pressure	Temperature	Loop	Percentag	Pressure and
					current	e	temperature

3.2 Two-line display mode

Displays the current percentage in progress bar

First line display instant Instantaneous flow.

The second line display totalized flow.

4 **Production Process Using HART-Config Tool**

Connect the flow meter as shown in Figure 4-1.

Figure 4-1 HART communication connection diagram

Run the HART-CONFIG TOOL software, and follow these steps to complete the production process of vortex flowmeters.

Note : This color means that these items must be done. must be done, and easily forgotten or incorrectly set. This color means that these items

5 Production Process via Local Adjustment

We recommend the following steps to set parameters.

This color means that these items must be done. be done, and easily forgotten or incorrectly set. This color means that these items must

6 Data Entry

6.1 Basic Function of Keys

Data is entered using the 3 keys M, S and Z on the display.

6.2 Enter or Exit Menu Mode

6.2.1 Enter Menu Mode

In the operating mode, press the "Z" key to enter the menu mode (data entry).

6.2.2 Exit Menu Mode

In the menu mode, press the "Z" key to back to the operating mode.

6.3 Data Entry Method

Setting parameters include "select" and "data input" methods.

6.3.1 Select Method

- ☑ Long press M-Key to enter setting, and the menu options will start flashing.
- ☑ Short press M-Key or S-Key to scroll backwards or forwards the menu.
- \boxtimes Long press M-Key to save (access) the parameter.

6.3.2 Data Input Method

- \square Long press the M key, that means press the M button for 3 seconds and then release it to enter the setting. In this state, the underline is on the second line, indicating that the parameters can be modified;
- Short press the M-Key to switch the sign.
- Dress the S-Key to shift the setting number. Press M-Key to increase the setting number.
- Press the S-Key to shift the setting number again. All bits can be set according to the same operation.
- ☑ Long press M-Key to save (access) the parameter. Or press Z-Key to give up and exit settings.

For example, the original range 100% is 200 and the range 100% needs to be changed to 400.

Press the Z-key to enter the menu mode. Press M-Key or S-Key to scroll backwards or forwards the menu until to set the range limit menu.	Setting the upper range value menu Range 100% 200.000
Long press the M key, that means press the M button for 3 seconds and then release it to enter the setting. In this state, the underline is on the second line, indicating that the parameters can be modified;	Enter setting menu Range 100% 200.000
Press the M-Key to switch the sign between "+" and ".". "-"means data is negative (less than 0, vortex flowmeter upper range value must be a positive number).	Setting sign Range 100% +200.000
Press the S-Key to shift the setting number. Then press M-Key to increase the setting number. If the highest bit is set, the number that can be entered is between 0 and 9; if it is other bits, the decimal point can also be selected.	Setting sign Range 100% +400.000
Long press M-Key to save (access) the parameter. Press Z-Key to give up and exit settings. Return to the previous menu or return to the operating mode.	

6.4 Local Configuration Function

6.4.1 Basic Function (No Password)

Menu	Setting method	Notes
Contrast	Select	1~5
Protection	Select	ON / OFF
Min Alarm(%)	Data Input	Set low alarm value. Unit: %
Max Alarm(%)	Data Input	Set high alarm value. Unit: %
MeterSize	Read Only	View meter size setting.
Flow mode	Select	Liquid Qv: Liquid volume
		Liquid Qm: Liquid mass
		Gas Qv: Gas volume
		Gas Qm : Gas mass
		Steam Qv: Steam volume
		Steam(P/T) : Steam mass
		Sat_Steam(T) : Saturated steam mass (temperature
		compensation)

		Sat_Steam(P) : Saturated steam mass(pressure	
		compensation)	
Unit-Qv	Select	Volume units supported:	
Unit-Qm		Nm^3/h , Nm^3/m , Nm^3/s ,	
		<i>l</i> /s, <i>l</i> /m, <i>l</i> /h,	
		m^3/s , m^3/m , m^3/h , m^3/d ,	
		Scf/s, Scf/m, Scf/h,	
		cf/s, cf/m, cf/h,	
		USG/s, USG /m, USG /h,	
		UKG/s, UKG /m, UKG /h,	
		bbl/h, bbl/d,	
		Mass units supported :	
		g/s , g/m, g/h,	
		kg/s, kg/m, kg/h, kg/d,	
		t/m, t/h, t/d,	
		lb/h, lb/d	
		Note: Totalizer flow's unit based on the flow unit.	
Range 100%	Data Input	Set the Qmax value for selected flow mode (= 20 mA)	
Density (kg/m ³)	Data Input	Set Gas density (unit: Kg/m3)	
Density $(g/c m^3)$		Set Liquid density (unit: g/cm3)	
Gauge Pre.(Kpa)	Data Input	Use for gas or steam measure. Unit: kpa.	
Temperature (🛛)	Data Input	Use for gas or steam measure. Unit: \square	
PV Cutoff (%)	Data Input	Range: 0% ~ 20%	
Damping	Data Input	Range: 0 ~ 64S	
Disp. Point	Select	Set the first line display point, can be 0,1,2, 3.	
Display Mode	Select	Set display mode.	
Totalizer reset	Select	When Lcd display 'Yes', long press M-Key to reset the	
		totalizer and overflow counter.	
Number of totalizer	Read Only	Display of the number of totalizer overflows;	
overflows		1 overflow = 10,000,000	
K-Factor	Read Only	View the k-Factor.	

6.4.2 Advanced Function (Password Protection)

Opcode	Data Input	Input ****50, set 51~ 57 menu _o
		Input ****60, set 60 menu _o
		Input ****61, set 62 menu _o
		Input ****62, set 62 menu _o
		Input ****63, set 63 menu _o
		Input ****70, set 70~77 menu _o
		Input ****40, set 40~ 41 menu _o
		Input ****38, set 38~ 39 menu _o
		Input ****11. view 11~ 13 menu _o

		Input ****111, preset total
		Input ****721, set temperature sensor trim data.
		Input ****741, set pressure sensor trim data.
Signal status [51]	Read Only	LCD display :
		450.00 This is the PGA gain.
		CH2 – A CH2 is signal channel.
		A means 10, it is signal amplitude, it must be greater
		than 9.
Meter size [52]	Select	Options :
		15mm, 20mm, 25mm, 32mm, 40mm, 50mm, 65mm,
		80mm, 100mm, 125mm, 150mm, 200mm, 250mm,
		300mm, 350mm, 400mm, 450mm, 500mm, 600mm;
		Note:
		1) LCD display DN15, means meter size is 15mm.
		2) If you change the meter size, you must re-set from
		53 to 56.
Fluid Type [53]	Select	Options : Gas, or Liquid.
		Note: If you change the fluid type, you must re-set
		from 53 to 56.
Low Flow Limit [54]	Data Input	According to the meter size and measuring media, set the
		corresponding low limit of the flow.
		The unit of 'Low Flow Limit' is fixed as m^3/h .
		The actual measurement of the lower limit of about 50%
		of 'Low Flow Limit'.
High Flow Limit [55]	Data Input	The 'High Flow Limit' defaults to 10 times the 'Low Flow
		Limit', the actual measurement of the upper limit of 2
		times the set value.
		The unit of 'High Flow Limit' is fixed as m ³ /h.
		When the actual required range ratio exceeds 20: 1, you
		can manually modify the 'High Flow Limit'.
Max AMP. [56]	Data Input	Between 200 and 600 suggested. Typically about 300.
k-Factor [57]	Data Input	Set average calibration k-Factor
Pulse Factor Unit [58]	Select	Options : m', N m', t, kg, Scf, cf, USG, UKG, bbl, lb.
Pulse factor [59]	Data Input	Set the number of output pulses corresponding to one
		'Pulse Factor Unit'.
		Note: If you want to output the original pulse, set
		K-factor [57]' and 'Pulse factor [59]' to the same
		value, and 'Pulse Factor Unit [58]' must set to m3.
[60]	Data Immet	Fine point K Foston competier
	Data Input	Five-point K-Factor correction.
K-Factor Irim F1		where F1 is the reference frequency, Y1 is the connection coefficient $K = 1.2.2.4.5$
K-Factor I fim Y1		correction coefficient K. 1=1,2,3,4,5.
[(1]	Data Ing t	
[[0]]	Data Input	I ne reference frequency value of the five-point correction

Frequency Factor		is multiplied by the Frequency Factor and then the new
		reference frequency value of the correction point is
		abtained
		Normally, this value should be 1
		Normany, uns value should be 1.
		when calibrated with water, for gas measurements, you
		can set the coefficient so that the five-point correction
		factor remains in effect.
[62]	Select	There are CH_1, CH_2, CH_3 three options _o
Channel settings		CH_3 gain maximum
		CH_1 gain minimum
		Note:
		CH2 generally used for liquid measurement, which
		corresponds to the configuration software, select X1 and
		X2.
		CH_3 generally used for gas measurement, which
		corresponds to the configuration software, select X1, X2
		and X3.
[63]	Select	There are F 1, F 2, F 3, F 4 four options.
Work mode settings		F 1: Anti-vibration Mode
		F 2: Normal Mode
		F 3: Turbine Mode
		F 4' Test Mode
		Note '
		Note:
		Note : Generally choose F_2.
[40]		Note : Generally choose F_2.
[40] Trim 4m 4		Note: Generally choose F_2.
[40] Trim 4mA		Note : Generally choose F_2. Steps : 1. Long press M-Key, enter trim; 2. Short many M lem to demonstrate proces S. Key to
[40] Trim 4mA [41].		Note : Generally choose F_2. Steps : 1. Long press M-Key, enter trim; 2. Short press M-key to decrease current. Press S-Key to
[40] Trim 4mA [41] . Trim 20mA		Note : Generally choose F_2. Steps : 1. Long press M-Key, enter trim; 2. Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes.
[40] Trim 4mA [41] . Trim 20mA		 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press
[40] Trim 4mA [41] . Trim 20mA		 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving.
[40] Trim 4mA [41] . Trim 20mA		 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving.
[40] Trim 4mA [41] . Trim 20mA [70]	Select	Note : Generally choose F_2. Steps : 1. Long press M-Key, enter trim; 2. Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. 3. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure [71]	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100. Pressure acquisition mode setting.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure [71] Pressure Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100. Pressure acquisition mode setting. Options : Manual, or Auto.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure [71] Pressure Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature is automatic acquisition, should be use external Pt1000 or Pt100. Pressure acquisition mode setting. Options : Manual, or Auto. Manual: Pressure uses the input reference value.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure [71] Pressure Measure	Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100. Pressure acquisition mode setting. Options : Manual, or Auto. Manual: Pressure uses the input reference value. Auto: Pressure uses the input reference value.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure [71] Pressure Measure	Select Select	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100. Pressure acquisition mode setting. Options : Manual, or Auto. Manual: Pressure uses the input reference value. Auto: Pressure uses the input reference value. Auto: Pressure is automatic acquisition, should be use external silicon pressure sensor.
[40] Trim 4mA [41] . Trim 20mA [70] Temp. Measure [71] Pressure Measure [72]	Select Data Input	 Note : Generally choose F_2. Steps : Long press M-Key, enter trim; Short press M-key to decrease current. Press S-Key to increase current. Stepping is 16 microamperes. Long press M-Key to save new trim value. Or press Z-Key to exit without saving. Temperature acquisition mode setting. Options : Manual, or Auto. Manual: Temperature uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100. Pressure acquisition mode setting. Options : Manual, or Auto. Manual: Pressure uses the input reference value. Auto: Temperature is automatic acquisition, should be use external Pt1000 or Pt100.

		For example: 1000 for Pt1000, or 100 for Pt100.
[73]	Data Input	Enter the high calibration resistor value, unit: ohm.
Temperature high trim		Use standard resistance as input
		For example:2500 for Pt1000, or 250 for Pt100.
[74]	Data Input	Enter the calibration reference pressure value, unit is Kpa
Pressure low trim		Apply the standard pressure to the sensor.
		For example: 0 Kpa
[75]	Data Input	Enter the calibration reference pressure value, unit is Kpa
Pressure high trim		Apply the standard pressure to the sensor.
		For example: 1000 Kpa
[76]	Data Input	Set the low pressure cutoff value. Unit is Kpa.
Pre. Cutoff		If the measured pressure value is less than 'Pre. Cutoff',
		the pressure will be set to 0kpa.
[77]	Data Input	Set the pressure bias value. Unit is Kpa.
Set Pre. Bias		Enter the current actual pressure value to achieve bias.
		The pressure will be set to input value.
[38]	Data Input	This parameter is only used for steam mass measurement.
Min Pre. (Kpa)		In the steam mass measurement mode, if the pressure is
		less than the set minimum pressure value' when the
		pressure compensation is activated, the flow will
		automatically return to zero.
[39]	Data Input	This parameter is only used for steam mass measurement.
Min Temp. (🛛)		In the steam mass measurement mode, if the temperature
		is less than the set minimum temperature value' when the
		temperature compensation is activated, the flow will
		automatically return to zero.
[11]	Read Only	To view the embedded software version.
Version		
[12]	Read Only	The internal conversion frequency value corresponds to
Max Frequency		the 'High Flow Limit'.
[13]	Read Only	The internal conversion frequency value corresponds to
Min Frequency		the 'Low Flow Limit'.
[111]		Used to directly set the current total flow value.
Total Preset		
[721]	Data Input	You can directly view and modify the temperature sensor
Temp. Data X0;		calibration values.
Temp. Data Y0;		Temp. Data X0 and Temp. Data X1 are internal ADC
Temp. Data X1;		measurements.
Temp. Data Y1;		Temp. Data Y0[73] and Temp. Data Y1[74] are the input
		calibration value.
[[741]	Data Input	You can directly view and modify the pressure sensor

Pre. Data X0;	calibration values.
Pre. Data Y0;	the second and the second s
Pre. Data X1;	Rieasu PattenX9 and Pre. Data X1 are internal ADO
Pre. Data Y1;	the Rest of the Direct Carlos (1996) in the
	Eatibraten Value, and Pre. Data Y1[76] are the input

Special Note :

Low Flow Limit, High Flow Limit, maximum gain and average calibration K- Factor should be reset, if meter size or fluid type changed. These parameters are very important for vortex flowmeter good working, please carefully set according to the actual application.

6.5 Totalizer Flow Unit Table

Flow Unit	Totalizer Flow Unit
Nm ³ /h, Nm ³ /m, Nm ³ /s	Nm ³
m^{3}/d , m^{3}/h , m^{3}/m , m^{3}/s	m ³
1/h, 1/m, 1/s	L
Scf/s, Scf/m, Scf/h,	Scf
cf/s, cf/m, cf/h,	cf
USG/s, USG /m, USG /h,	USG
UKG/s, UKG /m, UKG /h,	UKG
bbl/h, bbl/d,	bbl
g/h, g/m, g/s	g
kg/d, kg/h, kg/m, kg/s	kg
t/d, t/h, t/m	t
lb/h, lb/d	lb

Totalizer flow's unit is determined according to the flow unit.

7 Parameter Description

7.1 K-Factor

The average k-Factor value shown in the display must be the same as the value on the primary tag on the flowmeter primary.

7.2 Five-point Linearity Correction

The actual k-Factor of vortex flowmeter is different in low flowrates and high flowrates. In order to improve the accuracy of vortex flowmeter, it provides 2 to 5 points k-Factor correction.

For example, for D = 80mm, measuring medium is liquid, the real k-Factor in different flowrates as follows:

<20 Hz	40	80	> 100
2200	2100	2100	2000

Then we can choose 4-points calibrated, set k-Factor 2100. Enter the calibration data as follows:

Free	luency	k-Factor coefficient	formula
20		0.954545	2100/2200=0.954545

40	1	2100/2100=1
80	1	2100/2100=1
100	1.05	2100/2000=1.05

7.3 Pulse Factor Description

There are two ways to set the pulse factor via HART-CONFIG Tool.

- 1. Set the number of pulses output every one unit [58] total flow.
- 2. Set a pulse corresponds to how many of one unit [58] total flow.

The output pulses are based on the flow value after five-point K-Factor correction. That will get higher accuracy than using the original pulses.

The local adjustment menu [59] is used to set the output pulse number corresponding to 1 unit [58] total flow.

7.4 Output Original Pulses Description

If you need the flowmeter outputs original pulses, follow the following steps:

- 1. Set the K- Factor and the Pulse Factor equal. That is the value of local adjustment menu 57 and 59 equal. And set the pulse factor unit to m³.
- 2. Cancel the Five-point linearity correction via HART-CONFIG Tool. Or enter the local adjustment menu 60 to set all of correction coefficient K equal 1.0.

Then the flowmeter output pulse frequency equals to the original pulse frequency.

7.5 Temperature and Pressure Compensation

7.5.1 Precondition

The pressure sensor should be bridge type sensors and the temperature sensor should be Pt1000

User input reference pressure should be gauge pressure, and the unit must be kpa. Absolute pressure and gauge pressure relationship: Absolute pressure = gauge pressure + 101.325kPa.

User should input the reference resistor when trim the temperature sensor.

7.5.2 Pressure Sensor Trim

If you want trim the pressure sensor, please check the flow mode and pressure acquisition mode setting. If you want trim the pressure sensor, please check the flow mode and pressure acquisition mode setting.

Menu	Setting	
Flow mode	Set one of the following : (Other modes do not use pressure sensor.)	
	Gas Qv : Gas volume	
	Gas Qm : Gas mass	
	Steam Qv: Steam volume	
	Steam(P/T): Steam mass	
	Sat_Steam(P) : Saturated steam mass(pressure compensation)	
[71]	Pressure acquisition mode setting	
Pressure Measure	Auto: Start automatic measurement of external pressure.	
	External pressure sensor required	

It provides two points calibration for the pressure sensor. If use HART-CONFIG Tool, please enter into 'Advanced Features' -> 'Temperature and Pressure Sensors' to trim the sensor.

You can also trim the sensor via local adjustment menu 'Pressure low trim '[74] and 'Pressure high trim

'[75]:

- 1. Set flow mode and pressure acquisition mode.
- 2. Apply zero pressure to the sensor, enter into menu 'Pressure low trim '[74], input the reference pressure(gauge pressure, unit kpa) to trim zero.
- 3. Apply full pressure to the sensor, enter into menu 'Pressure high trim '[75], input the reference pressure(gauge pressure, unit kpa) to trim full.

Note: 'Pressure low trim' and 'Pressure full trim' should be calibrated together to ensure that the measured pressure is correct.

It should be noted that the pressure measurement cycle is approximately 4 seconds. The calibration should be performed after the input pressure has stabilized for more than 10 seconds.

7.5.3 Low pressure cutoff value

If the pressure measurement is close to 0Kpa, but it is not stable, for example, varied between -0.01 and 0.01kPa. You can set 'Low pressure cutoff value'to adjust the pressure measurement to 0Kpa.

If the measured pressure value is less than 'Low pressure cutoff value'it will set to be 0kpa.

7.5.4 Pressure bias settings

If there is a fixed pressure deviation, for example, the actual pressure value is 10 Kpa and the measured pressure value is 9.8 Kpa. You can perform 'Set Pre. Bias [7 7]', and enter 10(Kpa) to remove this error.

Enter the current actual pressure value, to achieve bias.

7.5.5 Temperature Sensor Trim

If you want trim the temperature sensor, please check the flow mode and temperature acquisition mode setting.

Menu	Setting	
Flow mode	Set one of the following: (Other modes do not use temperature sensor.)	
	Gas Qv: Gas volume	
	Gas Qm: Gas mass	
	Steam Qv: Steam volume	
	Steam(P/T) : Steam mass	
	Sat_Steam(T) : Saturated steam mass(Temperature compensation)	
[70]	Temperature acquisition mode setting	
Temperature Measure	Auto: Start automatic measurement of external temperature.	
	External temperature sensor Pt1000 or Pt100 required	

It provides two points calibration for the temperature sensor. We recommend use 10000hm and 25000hm, or 1000hm and 25000hm (for PT100) resistors for trim. If use HART-CONFIG Tool, please enter into 'Advanced Features' -> 'Temperature and Pressure Sensors' to trim the sensor.

You can also trim the sensor via local adjustment menu 'Temperature low trim '[72] and 'Temperature high trim '[73]:

- 1. Set flow mode and temperature acquisition mode.
- 2. Apply lower resistor, such as 10000hm, enter into menu 'Temperature low trim '[72], input the reference resistor value(1000) to trim..
- 3. Apply higher resistor, such as 25000hm, enter into menu 'Temperature high trim '[73], input the reference resistor value(2500) to trim.

7.6 Measurement Mode Setup Instructions

7.6.1 Gas Qv

A: Measure Working State Volume

Density:	Set to the	density at 20	(not used for computing)
Gauge Pre.(Kpa):	0.0KPa	'Change does no	ot affect the measurement'
Gas Tem (🛛):	20🛛	'Change does no	ot affect the measurement'

B: Measure Standard State Volume(201)

Density:	Set to the density at 20 \square (not used for computing)
Gauge Pre.(Kpa):	Input working state pressure (Gauge pressure). If the temperature and pressure
	compensation circuit board is used and set to Pressure automatic acquisition, use
	real-time pressure
Tem (🛛):	Input working state temperature. If the temperature and pressure compensation
	circuit board is used and set to Temperature automatic acquisition, use real-time
	temperature

7.6.2 Gas Qm

A: Current Actual Density is Known (the state transition factor is 1)

Density:	Set to the	e current actual density.
Gauge Pre.(Kpa):	0.0KPa	(Not allowed to change) 'changes affect the measurement'
Temperature (⊠):	20🛛	(Not allowed to change) 'changes affect the measurement'

B: Standard State Density is Known (state transition calculation is required)

Density:	Set to the standard state density. (0 KPa gauge pressure, 20 ° C)		
Gauge Pre.(Kpa):	Input working state pressure. If the temperature and pressure compensation circuit		
	board is used and set to Pressure automatic acquisition, use re-	al-time pressure.	
Temperature (2):	: Input working state temperature. If the temperature and pres	ssure compensation	
	circuit board is used and set to Temperature automatic act	quisition, use real-time	
	temperature.		

7.6.3 Liquid Qv

Density: Set to 1.0 or the current actual density. (Not used for computing)

7.6.4 Liquid Qm

Density: Set to the current actual density.

7.6.5 Steam Qv

Density:	Set to 1.205 o	r the current actual density. (Not used for computing)
Gauge Pre.(Kpa):	0.0KPa	'Not used for computing'
Temperature (X):	20🛛	'Not used for computing'

7.6.6 Steam Mass

A: Steam(P/T): (Temperature and Pressure Compensation)

If the external temperature sensor or pressure sensor fails, calculate the steam density according to the input temperature or pressure

Density: Not used for computing

- Gauge Pre.(Kpa): Input working state pressure. If the temperature and pressure compensation circuit board is used and set to Pressure automatic acquisition, use real-time pressure,
- Temperature (⊠): Input working state temperature. If the temperature and pressure compensation circuit board is used and set to Temperature automatic acquisition, use real-time temperature

B: Sat_Steam(T): Saturated Vapor(Temperature Compensation)

If the external temperature sensor fails or the temperature sensor is not connected, the steam density is calculated according to the input temperature.

Density: Not used for computing.

Gauge Pre.(Kpa): Not used for computing.

Temperature (⊠): Input working state temperature. If the temperature and pressure compensation circuit board is used and set to Temperature automatic acquisition, use real-time temperature

C: Sat_Steam(P): Saturated Vapor(Pressure Compensation)

If the external pressure sensor fails or the pressure sensor is not connected, the steam density is calculated according to the input pressure.

Density: Not used for computing.

Gauge Pre.(Kpa): Input working state pressure. If the temperature and pressure compensation circuit board is used and set to Pressure automatic acquisition, use real-time pressure.

Temperature (°C): Not used for computing.

7.6.7 LANGUAGE OPTION

Press one time Z button and the menu will open. You can use Middle button (S) for Slide Right at the menu section, Continue press S button untill see code section. When you see code section, hold press M button (left one) a few second and the screen will allow you enter code. UseS button for going right also use M button for increase number's. set there password as 00509. when you set the password ,hold press a few second M button then language setting should open. After see language change section please hold press M button and device will allow to you change language from Turkish to english or opposite , after you're done hold press M button a few second then setting is complete. After language set complete You can use Z button 2 times back to main screen.

Sandwich Type Connection Dimensions

mm	Α	В	C	D	E	F
15-20-25-32	68	54	96	100	440	470
40	82	78	110	140	460	490
50	85	87	110	145	490	520
65	84	105	112	165	510	540
80	88	120	116	176	540	570
100	91	140	120	200	560	590
125	92	168	126	230	580	610
150	96	194	130	265	600	630
200	101	248	140	320	630	660
250	114	300	160	370	660	690
300	128	350	170	445	690	720

Flanged Type Connection Dimensions

mm	Α	В	С	D
15	170	95	430	460
20	170	105	430	460
25	170	115	440	470
32	170	132	450	480
40	160	150	480	510
50	160	160	480	510
65	160	180	530	560
80	180	195	530	560
100	180	215	550	580
125	180	245	560	590
150	180	280	590	620
200	200	340	620	680
250	200	405	710	740
300	350	460	750	780

7.7 TECHNICAL DRAWING / INSTALLATION INFORMATION / MEASUREMENT INTERVALS

For accurate and precise measurements in liquid fluids, prevent the formation of air bubbles in the pipe. Air bubbles in the line cause erroneous measurements.

	Straight Distance			
Pipe Connection Type	Login	Exit		
Concentric Shrink Pipe	15D	5D		
Concentric Expanding Pip∂oru	35D	5D		
90° Elbow	20D	5D		
90° Double Elbow (Same Plane)	25D	5D		
90° Double Elbow (Different Plane)	30D	5D		
Valve (Full Open)	20D	5D		
Valve (Half Open)	40D	5D		

7.7 TECHNICAL DRAWING / INSTALLATION INFORMATION / MEASUREMENT INTERVALS

DN	K-factor	Liquid (m3/h)	Frequency (HZ)	Gas (m3/h)	Frequency (HZ)	Steam (m3/h)	Frequency (HZ)
15	350000	0.5-5	88-580	3-20	240-2350	4-50	260-2000
20	148000	0.6-10	38-422	5-40	210-2132	7-80	210-1900
25	74980.3	1-16	25-336	8-60	190-1140	10-80	210-1680
32	30511	1.8-18	16-264	20-120	150-1100	12-120	156-1080
40	17523.5	2-30	10-200	30-180	140-1040	25-180	126-910
50	9451.2	3-50	8-160	40-350	94-1020	40-260	100-700
65	4113	5-50	6.1-77.1	70-650	80.7-807	35-800	94-940
80	2346	7-100	4.1-82	90-900	55-690	100-800	63-500
100	1153.5	15-180	4.7-69	150-1500	42-536	160-1100	50-350
125	573.1	20-210	3.3-41.6	250-2200	38-416	150-2000	38-475
150	334	30-400	2.8-43	350-3500	33-380	400-3500	38-350
200	141.5	50-700	2-31	600-7000	22-315	580-7000	23-270
250	70.8	70-1000	1.5-25	1000-9000	18-221	960-9600	20-200
300	42.98	100-1800	1.2-24	1500-14000	16-213	1300-13000	16-160

MEASURABLE FLOW RANGE ACCORDING TO PRODUCT DIAMETER AND FLUID

FLOW CHANGE TABLE ACCORDING TO SATURATED STEAM PRESSURE

	Debi	Measurable Flow Values (kg(h)								
		1 Bar	2 Bar	4 Bar	6 Bar	8 Bar	10 Bar	15 Bar	20 Bar	25 Bar
15	Min	2,2	3,2	5,1	7,1	8,9	10,8	15,5	20,2	25,0
	Max	54,5	79,6	128,4	176,3	223,7	270,8	388,2	505,9	624,5
20	Min	3,8	5,6	9,0	12,3	15,7	19,0	27,2	35,4	43,7
	Max	95,4	139,2	224,6	308,5	391,4	473,9	679,3	885,3	1092,9
25	Min	6,1	8,9	14,4	19,8	25,2	30,5	43,7	56,9	70,3
20	Max	153,4	223,7	361,0	495,7	629,1	761,6	1091,8	1422,8	1756,5
22	Min	10,2	14,9	24,1	33,0	41,9	50,8	72,8	94,9	117,1
32	Max	255,6	372,9	601,7	826,2	1048,4	1269,3	1819,7	2371,4	2927,5
40	Min	15,7	22,9	36,9	50,7	64,3	77,9	111,6	145,4	179,6
40	Max	392,0	571,8	922,6	1266,9	1607,6	1946,3	2790,1	3636,1	4488,8
50	Min	23,9	34,8	56,2	77,1	97,9	118,5	169,8	221,3	273,2
50	Max	596,5	870,1	1404,0	1927,8	2446,3	2961,8	4245,9	5533,2	6830,7
65	Min	49,1	71,6	115,5	158,6	201,3	243,7	349,4	455,3	562,1
05	Max	1227,0	1789,9	2888,2	3965,8	5032,5	6092,8	8734,4	11382,6	14051,8
00	Min	61,4	89,5	144,4	198,3	251,6	304,6	436,7	569,1	702,6
00	Max	1533,8	2237,4	3610,3	4957,3	6290,6	7616,0	10918,0	14228,2	17564,7
100	Min	95,4	139,2	224,6	308,5	391,4	473,9	679,3	885,3	1092,9
100	Max	2385,8	3480,4	5616,0	7711,3	9785,3	11847,1	16983,5	22132,8	27322,9
125	Min	150,0	218,8	353,0	484,7	615,1	744,7	1067,5	1391,2	1717,4
125	Max	3749,2	5469,3	8825,2	12117,8	15376,9	18616,8	26688,4	34780,1	42935,9
150	Min	204,5	298,3	481,4	661,0	838,7	1015,5	1455,7	1897,1	2342,0
150	Max	5112,5	7458,1	12034,3	16524,2	20968,5	25386,6	36393,2	47427,4	58549,0
200	Min	374,9	546,9	882,5	1211,8	1537,7	1861,7	2668,8	3478,0	4293,6
200	Max	9373,0	13673,2	22062,9	30294,4	38442,3	46542,0	66720,9	86950,3	107339,9
250	Min	599,9	875,1	1412,0	1938,8	2460,3	2978,7	4270,1	5564,8	6869,8
230	Max	14996,8	21877,1	35300,6	48471,0	61507,7	74467,3	106753,4	139120,4	171743,8
300	Min	852,1	1243,0	2005,7	2754,0	3494,8	4231,1	6065,5	7904,6	9758,2
300	Max	21302,2	31075,4	50142,9	68850,9	87368,9	105777,4	151638,4	197614,2	243954,2